
Paper ID #37722

Analyzing the use of auto-graded labs with a built-in
simulator to learn assembly programming
Chi Yan Leung

Chelsea Gordon

Research Lead at zyBooks

Efthymia Kazakou

Efthymia Kazakou is Sr. Assessments manager at zyBooks, a startup spun-off from UC Riverside and acquired by Wiley.
zyBooks develops interactive, web-native learning materials for STEM courses. Efthymia oversees the development and
maintenance of all zyBooks content resources used for assessment purposes.

Yamuna Rajasekhar

Yamuna Rajasekhar is a senior manager of Content at zyBooks, a Wiley Brand. She is a senior author and contributor to
various zyBooks titles. She formerly was an assistant professor of Electrical and Computer Engineering at Miami
University. She received her M.S. and Ph.D. in Electrical and Computer Engineering from UNC Charlotte.

© American Society for Engineering Education, 2022
Powered by www.slayte.com

 Analyzing the use of auto-graded labs with a built-in simulator to learn assembly
 programming

 Abstract

 Our Computer Organization and Design (COD) online interactive textbook, adapted from a
 leading computer organization and systems title in 2015, introduced an embedded simulator
 allowing students to practice assembly programming with MIPS, ARM, or RISC-V within the
 textbook. In addition to our built-in simulator, in summer 2021, we developed a new auto-graded
 lab environment to support MIPS with 10 new lab assignments that have been used in 6 different
 courses.

 To evaluate both the platform and the content of the labs, we analyzed these labs attempted by
 28-84 students across all 6 courses. We summarize the average completion rate and the average
 time spent on each lab. Our analysis also shows how using the simulator impacts student struggle
 on homework assignments embedded in the textbook. Finally, we share our best practices for
 authoring similar auto-graded assembly problems.

 Introduction

 Computer organization courses often come with a programming component that is close to the
 hardware used in the course [1],[2]. Programming using assembly language can be unintuitive as
 there are no easy keywords and lower level abstractions that the simulator does. This often
 makes programming in an assembly language challenging to many students, especially students
 that are used to programming in languages like Java or Python. Additionally, students have to
 download and use a new integrated development environment (IDE) that maps to the hardware.
 This extra effort to write and debug in different environments introduces a mental overhead for
 students.

 In this paper, we present an innovative labs solution for Computer Organization courses. The
 suite of labs presented are embedded in a web-native, interactive textbook. The textbook itself is
 an adaptation of a well known textbook in the field. The labs support assembly programming
 languages based on three instruction set architectures: MIPS (Microprocessor without
 Interlocked Pipelined Stages), RISC-V (an open standard architecture based on Reduced
 Instruction Set Computer), and ARM (Advanced RISC Machine). Additionally, the key
 innovation is a built-in simulator that enables the students to step through the program execution
 and gain insight into how the registers and memory interact with the program during execution.
 We have developed a suite of 10 sample labs to accompany the Computer Organization and
 Design (MIPS/ARM/RISC-V) interactive textbook and the Introduction to Computer Systems
 and Assembly Programming interactive textbook. The labs range in difficulty from writing

 simple instructions of arithmetic expressions and memory access to implementing complex
 procedures.

 Simulator Environment

 The built-in simulator allows students to practice assembly programming while reading the text,
 offering the opportunity for students to practice immediately as they read the text and also
 reducing the overhead of switching environments.

 Our simulator supports 38 commonly used MIPS instructions, covering arithmetic, memory
 access, logics, and control flow operations. To help students focus on learning the basic behavior
 of assembly programs, we removed features commonly found in third-party simulators including
 system calls for input and output, data declarations, and memory addressing. Since this course is
 an introduction to assembly programming for students, we designed an environment that is
 simple so the students can focus on learning assembly programming. Registers and memory
 locations are initialized within our simulator before a program executes. Only the registers and
 memory locations used by the program are displayed. Addresses of memory locations can be any
 32-bit unsigned integer values. As a result, students can perform memory operations without
 using long and difficult-to-remember memory addresses. Furthermore, students can step through
 a program's execution and observe the flow of the program and the interactions between the
 program and the storage used for the registers or memory. Students can also run the program
 simulations sequentially at three different speeds, allowing the students to adjust their learning
 pace. An example of the simulator is shown in Figure 1.

 Figure 1: The simulator environment with the programming window, the memory, and registers.

 Innovative lab environment

 While the simulator in the book adds an advantage to aid student learning and provides a built-in
 practice environment, lack of grading means that students have no feedback at all on their
 program. Our lab environment combines our simulator with an auto-grader that offers students
 immediate feedback, and thus improves learning and reduces student frustration [3]. When
 combined with our MIPS simulator, our labs platform creates an environment for students to
 practice and assess their assembly programming skills. This integration also saves students from
 performing extra logins or unnecessary file transfers. In addition, this autograding feature
 provides an advantage to instructors because students are able to get meaningful feedback as they
 work on their labs leading to less dependency on the instructor.

 As presented in Figure 2, our lab environment offers two different modes: development and
 submission. In the development mode, students implement their programs in the coding window
 of a built-in simulator. With the assistance of the simulator, students can step through a program's
 execution and observe their program's behavior.

 Figure 2: Development and submission mode of our lab environment.

 Each execution in the simulator is not graded, and students can make as many changes as
 necessary to ensure their programs behave correctly. Once students are ready to submit their
 programs, they click the submit button to initiate the submission process. In submission mode, an
 auto-grader tests a student's program against a set of test cases. Each test case compares the
 values of a specific group of registers or memory locations, generated by the program. A score is
 awarded when a test has passed (Figure 3). If a test fails, the auto-grader indicates the incorrect
 results generated by the student's program (Figure 4).

 Figure 3: Lab execution results when all tests pass.

 Figure 4: Lab execution results when some tests fail.

 Labs and Methods

 We have created ten new labs to help students understand the basic constructs of MIPS assembly
 programs. Besides a training lab that introduces students to our lab environment, the other nine
 labs cover the concepts such that each falls into one of five categories: arithmetic and logical
 operations, memory access, conditional branching, array operations, and procedures.

 1) In the category of arithmetic and logical operations, three labs are designed to assess a
 student's ability to apply MIPS instructions on additions, subtractions, multiplications, and
 bitwise logical shifts. (Arithmetic expression - add/sub, Arithmetic expression - add/sub/mult,
 and Multiplications and divisions using shift operations - bitwise operations)

 Figure 5: Overview of the multiplications and divisions using shift operations - bitwise
 operations lab

 2) In the category of memory access, a lab is designed to assess a student's ability to retrieve data
 from the memory and apply arithmetic operations to the retrieved data. (Volume of a rectangular
 box - lw/sw).

 Figure 6: Overview of the Volume of a rectangular box - lw/sw lab

 3) In the category of conditional branching, a lab is designed to assess a student's ability to apply
 the correct sequence of conditional branching instructions to find the maximum values among
 three numbers. (Max of 3 - slt/branch)

 Figure 7: Overview of the Max of 3 - slt/branch lab

 4) In the category of array operations, concepts of memory access and conditional branching are
 combined, and two labs are designed to assess a student's ability to perform sequential memory
 access and loop operations. (Array of squares - lw/sw and Array of Fibonacci sequence - loop)

 Figure 8: Overview of the Array of Fibonacci sequence - loop lab

 5) In the category of procedures, two labs are designed to assess a student's ability to make
 procedure calls and implement procedures in a MIPS assembly program. (Procedure calls and
 Nested procedures)

 Figure 9: Overview of the Nested procedures lab

 Our goal was to better understand student usage of the nine new auto-graded lab assignments
 that have been used in 6 different courses.

 Metrics

 For each of the nine lab assignments, we defined the following metrics:
 ● Average time spent (minutes): Of students who submitted to the lab, the median amount

 of time spent by students in the lab.
 ● Average number of submissions: Of students who submitted to the lab, the median

 number of total program runs that they made. This includes both submission and
 simulator runs.

 We only included students who spent at least one minute in the lab. The number of students
 counted for each lab can be seen in table 1.

 Lab Students

 Arithmetic expression 45

 Arithmetic expression 2 57

 Array of squares 82

 Max of 3 83

 Array of Fibonacci sequence 72

 Multiplications and divisions 57

 Volume of a rectangular box 84

 Procedure calls 28

 Nested procedures 34
 Table 1: Number of students who completed each lab

 Results and Discussion

 Figures 10 and 11 show the median number of the combined simulator and submission runs and
 the total development time spent in minutes for each COD lab. The labs are listed in a
 chronological order. The time spent data confirms the experience of many instructors teaching
 this course that learning the implementations of the abstraction structures such as memory
 organizations, control flow, and procedures in assembly language is more challenging than
 learning the same concepts in high-level programming languages such as Java and Python. In
 those languages, students typically spend between 10 and 30 minutes on a typical lab
 assignment. In the Array of squares lab, students need to create the memory structure of an array,
 which requires students to keep track of the memory addresses of the elements stored in an array.
 In the Max of 3 lab, students need to instruct the program which part of the program to go to
 after a test is performed because if-else clauses are not available in assembly language. In the
 Array of Fibonacci lab, students need to implement the flow of the program because loop
 structures are not available in assembly language. In the Nested procedures lab, students need to
 maintain the addresses of the program instructions so that the program can execute the correct
 instructions after returning from a procedure call. High-level programming languages often
 encapsulate these abstractions so a programmer does not need to manage where data or
 instructions are stored in a physical memory.

 The time spent data shown in figure 11 also suggests that our lab ordering helps students learn
 the concepts in the same category effectively. After completing the Arithmetic expression lab,
 students took close to half the time on the subsequent and more difficult Arithmetic expression 2
 lab. A similar observation can be made between the Array of square lab and the Volume of a

 rectangular box lab. With thoughtful planning on the difficulties and arrangement of labs,
 students can learn the more challenging concepts in assembly programming effectively.

 Figure 10: Median number of total program runs per student for each COD lab. Error bars
 represent the 95% confidence interval.

 Figure 11: Median number of total minutes spent per student for each COD lab. Error bars
 represent the 95% confidence interval.

 Figure 12 shows the median number of program runs for each COD lab in the development and
 submission mode. The data suggests that students are utilizing the built-in simulator to develop
 and troubleshoot their programs. This observation is especially true when the students are doing
 the more difficult labs. While the number of submission runs remains low, the number of
 development runs is substantially varied between labs, suggesting that the simulator is helping
 them learn the concepts that they find difficult.

 Figure 12: Median number of program runs for each COD lab in the development and
 submission modes

 Conclusion

 This paper analyzed the use of nine auto-graded lab activities by 28-84 students across 6 courses.
 We observed the average time spent and the average number of submissions for each lab
 assignment. Time spent data aligned with our expectations, indicating that learning assembly
 programming is difficult, but can be made easier with good interactive simulators.

 These results come from early adopters of the new COD labs, and as such is a small sample size.
 Future work includes collecting more data for the labs analyzed above as our COD books

 become available to all institutions and not just the 6 universities that beta tested our labs. Also,
 the ARM and RISC-V versions of the book will be available for evaluations in Spring 2022. In
 addition to the ARM and RISC-V versions, an introduction to Computer Systems and Assembly
 Programming (CSAP) version will follow soon after. CSAP covers MIPS assembly
 programming as well as some basic concepts of computer organization and uses a simplified
 version of MIPS to make learning assembly programming easier.

 References
 [1] K. Vollmar and P. Sanderson. "MARS: an education-oriented MIPS assembly language

 simulator," In Proceedings of the 37th SIGCSE technical symposium on Computer science
 education (pp. 239-243), March 2006.

 [2] Y. Hung, "Combining Self-Explaining With Computer Architecture Diagrams to Enhance the
 Learning of Assembly Language Programming," in IEEE Transactions on Education , vol.
 55, no. 4, pp. 546-551, Nov. 2012, doi: 10.1109/TE.2012.2196517.

 [3] C. L. Gordon, R. Lysecky, and F. Vahid. "The rise of program auto-grading in introductory cs
 courses: A case study of zylabs," In 2021 ASEE Virtual Annual Conference., July 2021.

