
Paper ID #33288

Coding Trails: Concise Representations of Student Behavior on
Programming Tasks

Prof. Frank Vahid, zyBooks; University of California, Riverside

Frank Vahid is a professor of Computer Science and Engineering at the Univ. of California, Riverside,
and co-founder and chief learning officer of zyBooks. His research interests include CS/engineering
education, and embedded systems.

Prof. Roman Lysecky, University of Arizona; zyBooks

Roman Lysecky is VP of Content at zyBooks, A Wiley Brand and a Professor of Electrical and Computer
Engineering at the University of Arizona. He received his Ph.D. in Computer Science from the University
of California, Riverside in 2005. His research focuses on embedded systems, cybersecurity, and STEM
education. He has authored more than 100 research publications, received nine Best Paper Awards, is an
inventor on multiple patents, and received multiple awards for Excellence at the Student Interface.

Dr. Bailey Alan Miller, University of California, Riverside

Bailey Miller is the Director of Engineering at zyBooks, a part of John Wiley and Sons. He formerly
worked as a software engineer at Space Exploration Technologies Corporation (SpaceX). He received
his B.S. in Computer Engineering, and his M.S and Ph.D. in Computer Science, from the University of
California, Riverside in 2009, 2011, and 2014, respectively.

Lyssa Vanderbeek, zyBooks

Lyssa Vanderbeek is Sr Director of Product Management at John Wiley, and Sons. Lyssa received her
BA in Economics from Whitman College and her MBA from the Haas School of Business, University
of California at Berkeley. She has spent over 20 years developing technology products for higher educa-
tion. After joining Aplia, Inc as an early employee, Lyssa led Product Mangement at Cengage Learning,
Macmillan Learning, Inkling, and EduNav.

c©American Society for Engineering Education, 2021

Coding Trails: Concise Representations of Student Behavior on
Programming Task

ABSTRACT

CS instructors desire visibility into student programming behavior, such as seeing the days a student
worked, the time spent, and the number of compiles/runs. Such visibility may help find struggling
students, prevent or detect cheating, and provide insight into the effect of new policies like points for
earlier starts. Such visibility historically has been severely limited due to student use of external tools.
Today, many education-focused program auto-graders provide a cloud-based development environment
that records much student behavior. Detailed logs are cumbersome to view, especially for large classes,
but conversely, summary statistics like averages and standard deviations lose much useful information.
This paper introduces the concept of a "coding trail" as an attempt to visually and concisely summarize a
student's coding behavior on a programming assignment. Our visual coding trail displays dates, each
develop run, each submit run for auto-grading and score, and dramatic changes in code (often a sign of
cheating). The coding trail is textual rather than graphical, allowing easy copy-paste, incorporation into
spreadsheet gradebooks, and parsing by tools for further analysis, at the expense of some information
loss. A version of our coding trail has been implemented in the zyBooks program auto-grader and
appeared for over 2,000 courses and 130,000 students in 2020, with numbers growing. This paper
introduces the coding trail, discusses various tradeoffs in its design, and points to a variety of uses.

1 Introduction
Teachers of programming courses have long wanted visibility into their students' programming behavior,
such as what dates and times students programmed, how much time they spent, how often they
compiled/ran their programs, how much code they wrote between compiles/runs, and so on.

However, in the past, most student programming was done in environments like Eclipse, Visual Studio,
or command line tools, that didn't log such activity or make such logs readily available to teachers.
Some education-focused environments evolved that logged development behavior, like BlueJ for Java,
allowing research into student behavior such as [Jadud05][Jadud06]. Some teachers had students use
version control software like Git to get some insight into student behavior [Conner19], modifying
Eclipse to integrate with Git [Yan19], or integrating with the Web-CAT auto-grader [Kazerouni17]. The
Runestone project logs Python development activity, allowing for research such as [Yeckeh19].

In recent years, cloud-based program auto-grader usage has grown tremendously. Hundreds of
universities have switched from manual to auto-grading, reaching hundreds of thousands of students
[Gordon21]. Auto-graders can create a log of every submission students make for auto-grading,
including date, time, the submitted program, and more. In fact, some such auto-graders provide a
development environment too, so potentially can log all compiles/runs also, as depicted in Figure 1.

Figure 1: Modern auto-graders may have a development environment and a submit option. Activity may be
recorded, including timestamps, scores, and even each run’s code itself.

While detailed logs enable researchers to perform analyses, teachers need a way to quickly "see" the
behavior of their class or of an individual student. We thus developed a compact visual representation of
a student's programming behavior that we call a coding trail. We also want that coding trail to be
conspicuously present for students, so they know effort matters, and not the final submission. While
researchers have used recorded activity to measure student effort [Edwards16][Li18][
Romero20][Toll16], we are not aware of similar attempts to visually represent programming effort.

This paper describes goals of such a visual representation, tradeoffs we considered, our current coding
trail, potential uses of such a coding trail, and future work. The coding trail feature has been enabled in
the zyBooks program auto-grader used by over 2,000 courses and 130,000 students in 2020.

2 Goals and approach
2.1 Goals
Detailed textual logs are hard for teachers to process. We desired a concise representation that would
allow teachers to quickly understand the programming behavior of their class and/or of a particular
student. Such a representation ideally would:

● show dates and times worked
● show development runs, when the student tests their own program
● show submission runs for auto-grading, including scores received
● show code size as the student develops and submits
● be visual for quick processing
● be copy-pastable into various documents like emails, spreadsheets, or gradebooks in learning

management systems

● be machine readable for further processing
● show anomalous behavior like dramatic code changes between runs or coding style that departs

from the class’s style

If such a representation were available for a given programming assignment, a teacher for example
could quickly see that:

● their class is starting early, or instead is starting too late, in which case a teacher might encourage
earlier starts informally or via points, extra credit, etc.

● some students are submitting perfect code with almost no effort, suggesting some students might
be copying code from classmates or the web.

● a particular student in office hours has genuinely been working hard, or instead that they have
made minimal effort.

● most students are struggling on an assignment, or an assignment was easier than planned.

Furthermore, making such a representation conspicuously visible to students might reduce their
temptation to cheat by submitting a copied solution, since students would readily see that a teacher can
see not just their final submission but also their effort leading to that submission.

The common approach to concisely represent detailed logs is a statistical summary, which has some
benefits. But, statistics hide much information, and providing more detailed statistics can overwhelm the
viewer. Furthermore, students may be less likely to notice numerical statistics.

Instead, we desired a visual representation, based on the fact that human brains are optimized to quickly
process visual information. Such quick processing is important not only to meet the needs of busy
teachers, but also so the representation can be shown to students in a simple comprehensible impactful
manner, without cluttering their programming view.

2.2 Approach
Throughout 2019 and 2020, we developed and demonstrated our coding trails to over 50 CS teachers
across the U.S., at community colleges, 4-year teaching schools, and 4-year research schools. Using
feedback from teachers, we iteratively refined the coding trails with the aim to serve needs.

Teachers indicated much interest in coding trails, with the top interest being coding trails' potential to
prevent cheating. Other commonly stated interests were to help teachers notice struggling students so as
to proactively intervene, and to quickly see if a particular student was putting in sufficient effort.

3 Attempts and tradeoffs
Although we also investigated and developed graphical representations, such as bar charts on a calendar
view showing dates/times and durations spent programming, for this work we wanted to only consider
textual representations. The main reason is that text can be pasted directly into most gradebooks,
whether in a spreadsheet or in a learning management system (LMS) like Canvas or Blackboard. As
such, coding trails can be treated just like scores and statistical data, occupying another column of a

gradebook. And, a textual representation can be parsed by scripts for additional analysis. The main trade
off is losing the graphical benefit of showing time simply as a bar with width representing time spent.

3.1 Basic develop and submit runs
As an initial attempt, we tried a compact version of the log file for a given student:
dev dev dev dev sub(0) dev dev dev sub(2) sub(5) dev dev sub(10)

While enabling a quicker view than a detailed log, we realized the short words weren’t needed. Instead,
we could use single letters, and eliminate spaces. We used d for each develop run, and s for each submit
run followed by the score on that run. The student below did 4 develop runs, then submitted for a score
of 0, then 3 more develop runs, then submitted for 2, submitted again for 5, then 2 more develop runs,
and finally submitted for a score of 10 (full credit on this assignment).
dddds0ddds2s5dds10

We found the d's made the submissions and scores, which are important as they indicate correctness,
hard to see. We tried using symbols instead of d's, such as asterisks:
****s0***s2s5**s10

Those were better, but we decided a symbol with less visual clutter was needed, and chose a dash
symbol -, which let the submission scores stand out:
----s0---s2s4--s10

We found the s's distracting, and chose a symbol too. We chose one with minimal visual clutter, in this
case a | symbol:
----|0---|2|4--|10

We eventually eliminated the | unless needed to separate two adjacent submission scores, yielding:
----0---2|4--10

3.2 Dates and times
Teachers not only want to know how often students run code (develops and submits) and scores, but also
to know when students are working and for how long. So we investigated adding dates/times and
durations to the coding trail. For dates, we started by showing each date followed by that day's runs:
7/13 ----|0 7/14 ---|2|4--|10

Feedback from teachers was they thought of weekdays rather than dates. For example, a teacher might
every week release assignments on Monday and have them due on Sunday. Thus, we modified the
coding trail to only show the start date, and then used standard day-of-the-week abbreviations (M T W R
F S U). We also colored those letters to make days stand out even more; the color is optional and may
not persist if copy-pasted into places like a gradebook, which is OK. The student below started on
Monday 7/13, then worked again on Saturday and finished.

7/13 M----|0 S---|2|4--|10

In rare cases where the work extends beyond 7 days, we could insert a date again.

4 Examples
Figure 2 shows 10 real coding trails from a programming assignment of a class taught by one of the
authors. The assignment asked students to write a function and main program to determine whether an
input vector was sorted in ascending order. The instructor's solution was 40 lines. The coding trails are
sorted by date, and the assignment was released on Tue 5/12 (2020), due Tue 5/19. We easily see that:

Mia 5/13 W----10

Sha 5/14 R------------0|4|4|4---4|6 U0|0|8

Pi 5/16 S----8|8|8|10

Le 5/17 U0|4|10|10

Sam 5/17 U--4|8|10

Pat 5/17 U-------4|6 M--8-- T-8--8

Al 5/18 M--6|8-10

Mo 5/19 T---6------------------4--10

Jo 5/19 T0---2|0|0|0|2|2----2|0|0|0|2|2|2-0|8-

Jun 5/19 T10

Figure 2: Selection of real student coding trails for a particular program.

● Mia started early (Wednesday), developed 4 times, and submitted for a perfect 10.
● Sha started Thursday and worked hard but struggled a bit, getting stuck at 6 points, then coming

back Sunday and reaching 8 points, still short of 10.
● The next few students look solid.
● Pat looks to be struggling, working Sunday, Monday, and Tuesday and getting stuck at 8.
● Mo started on the due date, but worked hard and eventually reached 10.
● Jo also started on the due date, and seems to have struggled, also reaching but stuck at 8.
● Jun started on the due date and somehow submitted a perfect program in one try.

The key to note is how quickly a teacher can get a sense of how students are doing on the programming
assignment – a much better sense than numerical statistics, including days started and worked, and
effort. The coding trail lacks some info, like daily time spent, but still yields good insights.

After examining those coding trails, an instructor might:

● Feel satisfied that most students are trying.
● Encourage students to attempt the programs sooner.
● Find out why some students are getting stuck at 8 points. (We found it was due to not correctly

handling the test case where all items had the same value).
● Investigate Jun’s code further. (We determined Jun had cheated by outsourcing the work to a

contract programmer – undetectable by a similar checker).

5 Extensions

5.1 Dramatic change indicator
The coding trail above worked well, with teachers able to quickly understand the coding trails, and
indicating they felt a good sense of a student's efforts. Coding trails don't replace statistics like average
scores, develop runs, and submit runs, but complement those.

Looking at coding trails, we noticed a pattern where a student struggled, then suddenly got a perfect
score. Upon investigating the submissions, sometimes the perfect score was due to finally finding and
fixing a bug. But at other times, the sudden perfect score was due to the student resorting to cheating by
replacing their own solution with a copied solution. This is precisely the scenario that teachers in
Harvard’s CS50 class point out: “All too often were students’ acts the result of late-night panic, a
combination of little sleep, much stress, and one or more deadlines looming” [Malan20]. Teachers could
easily see the difference when looking at the source code because the student's program dramatically
changed soon before the perfect score.

Thus, we add a "dramatic change" indicator to the coding trail -- the student's code was evolving
normally with small changes between runs, and then suddenly the code was dramatically different. One
heuristic measures the number of characters that differ after running a standard diff algorithm, but
modified to reduce false alarms that might occur if a student simply wrote a lot of code between runs --
requiring a minimum base lines of code, requiring that many lines were deleted in addition to being
added, etc. More powerful heuristics can be developed over time, such as detecting differences in coding
style too. Whatever heuristic is used, we decided to indicate a dramatic change by inserting a % into the
coding trail. Because dramatic changes are rare, we also add a number between 0-100 indicating the
amount of change, and make the font red, without fear of obfuscating the rest of the coding trail. Again,
the color is optional and may not persist in gradebooks or other places. Below, student B4's coding trail
now shows a dramatic change on Saturday at a level of 98 of 100, meaning nearly all the code was
changed – perhaps warranting investigation by a teacher.

7/17 F-----0--0--0 S%98|10

5.2  Time-of-day, time spent, and code size
Teachers would also like to know what times of the day students programmed, to know for example if
students were working very late hours. However, we could not find a way to add times that didn't
dominate the coding trail and obfuscate the develop and submit info. And, students commonly took

breaks, meaning dozens of time indications (like 8:05pm) would be scattered throughout. We thus
abandoned efforts to show when students worked, at least for now.

Total time spent is also something teachers would like to see. We tried putting time spent at the end of
each day, plus a total at the end of the coding trail. We found though that teachers were most interested
in the total time; the detailed breakdown was interesting but not so important as to clutter the coding
trail. Thus, we plan to put the time info at the end of the coding trail, like below where the student spent
a total of 42 minutes:

7/13 M----0 S---2|4--10 42min

Likewise, teachers indicated wanting to know code size each day. Like time-of-day and time spent, such
info can quickly clutter the coding trail. Thus, we plan to just put the code size at the end as well, as in:

7/13 M----0 S---2|4--10 42m 205L

Future work may investigate ways to include time spent and code size throughout the coding trail as
well.

We note that coding trails are intended to be concise and visual, thus restricting how much info we can
include. However, future work may include a way for teachers to toggle to a more detailed coding trail.
And we note coding trails are best complemented by a detailed analytics view; coding trails do not
replace such detailed analytics.

Table 1 restates our goals and indicates whether our coding trail satisfies those goals, using a scale of
0-2, with 2 best, based on our subjective analysis.

Goal Satisfied? Notes

Dates/times worked 1 Only dates/days, no times

Develop runs 2 Uses dash -

Submit runs 2 Uses score like 6, with | separator like 6|8

Code size 1 Only at end; throughout would be better

Time spent 0.5 Only at end; throughout would be better

Visual 1.5 Text takes some getting used to; doesn’t depict time

Copy-pastable 2 Pure text. Even wraps

Machine-readable 2 Pure text, well-formed syntax

Anomalous behavior 1 Shows dramatic change. Doesn’t yet show style
departures or other red flags

Table 1: Analysis of coding trail format’s achievement of goals.

The coding trail yielded an unexpected benefit regarding navigation. We found instructors trying to click
on the scores or dashes, hoping to view the student's code for that run. Thus, on our webpage showing a
student's coding trail, we made every dash and score a link that brings up that run's code for the
instructor.

In the future, we hope to develop algorithms that bring “attention-worthy” coding trails to a teacher’s
attention. Potential cheating might be given a particular score and highlighted in shades of red. Potential
struggle might also be given a score and highlighted in yellow. Ultra-low-effort coding trails might be
scores and highlighted. And so on.

6 Applications, concerns, and early results
This paper introduces coding trails as a tool that could yield a variety of benefits to teachers. The paper
does not itself conduct research on those benefits, but we encourage future work that does so. However,
here we point to various applications that CS teachers have mentioned in response to seeing our coding
trails, and some of our class experiences over the past year.

6.1 Applications
Perhaps the most exciting application of coding trails is to prevent cheating. The theory is based on
crime/fraud/cheating prevention where three things lead to cheating: opportunity, pressure, and
rationalization. Opportunity includes not just the ability to cheat but the belief it will not be detected. For
example, stores commonly have customer-facing video monitors at their entrances, to let potential
shoplifters know they are more likely to be caught, thus decreasing perceived opportunity. Coding trails
serve a similar role; students who are considering cheating (due to pressure, and who have rationalized
such cheating) might see decreased opportunity when seeing coding trails and realizing that
copy-pasting a solution, even if unique from classmate solutions, may be detected by teachers via little
effort or dramatic change indicators. Personally, our goal is less about catching and punishing cheating,
and more about reducing the temptation in students, so they instead do the work required to learn. We
look forward to future work by others, and plan future work ourselves, to see the impact coding trails
have on reducing cheating.

Another application is to quickly see how a particular student is doing, such as when the student comes
to office hours. With just a glance, a teacher can quickly see if the student has been starting early each
week and trying hard, or instead has been starting late, doing few develop runs, struggling with repeated
submissions with low scores, etc. In fact, we have begun doing so in our own classes -- not just for
students who come to office hours for help, but in various cases where we want to know how a
particular student is doing, such as if we need to decide whether to give a student an extension or
whether to give them a grade bump if they are near a cutoff (students who are putting in effort are more
likely to receive such breaks when such decisions must be made).

Other applications include quickly gleaning information about how a class is doing, as was done in the
earlier example. A related application is to quickly see how a particular programming assignment was --
did it require a lot of work, or was it very easy? Coding trails allow a teacher to quickly see which
students are struggling -- in fact, we have pulled up our class' coding trails during class with student
names not shown, and then in a fun and supportive way we've discussed various patterns. Students often
say "I think that one is mine!" and invite us to open up their code so the class can see where they
struggled. The coding trails provide a nice entry point into discussing student code, more so than just a
list of statistics per student.

6.2 Concern: Do coding trails stress students?
Upon presenting coding trails to dozens of CS teachers over the past year, common questions included:

● Will students be stressed by seeing they are being watched, like "big brother"?
● Will students even notice coding trails?

Thus, although this paper's purpose is mainly to present the idea of coding trails as a basis for further
usage, experimentation, and research, we also surveyed students regarding the above. We surveyed
students in a summer CS1 class with 40 students, in which the instructor had not said anything to the
students about the coding trails during the class term, and the survey was given in the last week of the
term during online lecture time (meaning nearly all students participated).

The survey first pointed students to coding trails so they knew what we were referring to; coding trails
had conspicuously been present under their Run/Submit buttons for their entire term. Then, to address
the first question above, the survey's first item was: "Please share your thoughts on coding trails." With
this open-ended item, we could detect a positive or negative perspective without biasing the students via
an agreement question. We examined all 40 responses and found nothing remotely suggesting that
coding trails caused stress or any negative reactions. Some comments were neutral, and the only
negative ones related to students not fully understanding the format. Instead, most comments were
positive, as shown below (comments were copy-pasted verbatim, thus they include the students’ typos
and English errors).

● It's an interesting way to keep track of student progress
● I think its pretty cool
● I liked it because it showed my progression and gave me a timeline of my efforts
● I like seeing the number go up from, say 20, all the way up to 100.
● It's a good tool to prevent cheating
● I feel like they’re just there. Nothing to worry about unless the programmer is cheating.
● The coding trails show me my progress so far in the program and decrease my temptation to cheat.
● They are helpful to see my progress

We then asked several specific questions, summarized in Table 2.

Prior to today, did you notice the coding trails in
your lab activities?

90% yes

If you noticed the coding trails, did you
understand the format?

63% yes

Did you pay attention to coding trails when you
wrote your programs?

15% frequently, 43% sometimes, 27% rarely,
15% never

The existence of coding trails decreased my
temptation to cheat (i.e., copying someone else's
solution)

45% agreed

I think the existence of coding trails decreased
my classmates' temptation to cheat

64% agreed

Table 2: Results of student survey on coding trails, with no mention by instructor of coding trails
during the term.

Furthermore, we enabled coding trails in 68 classes across the U.S. in Spring 2020, totaling 3578
students. We looked for any evidence of unhappiness or dissatisfaction. While we received hundreds of
pieces of unsolicited feedback from those students, no student or teacher complained about coding trails.
Furthermore, we surveyed those students and teachers at the end of term, and in open-ended questions
asking for feedback, none said anything negative about coding trails, and we found no evidence that
those classes had any less positive of an experience.

In short, we have yet to find even any evidence that coding trails stress students or negatively impact
students, and instead that students generally found coding trails to be "cool" or "helpful". And, even
without any mention or use of coding trails by the instructor, a majority of students felt coding trails
reduced their class’ temptation to cheat; we expect numbers will be higher when instructors introduce
coding trails to students and use coding trails more directly in classes.

6.3 Time spent
Noting again that this paper's purpose is primarily to introduce the concept of coding trails that have
been enabled for several hundred thousand students per year, and not to conduct a specific study around
coding trails (as the former is a prerequisite to the latter), nevertheless we wish to share some early data
that suggests the usefulness of coding trails. For the spring of 2020, we enabled coding trails in our CS1
class section of 100 students (mostly non-CS majors), and actively introduced coding trails to the
students in Week 3 of the quarter. We showed students a coding trail in a lab activity and explained the
format. We then used coding trails during class time about once a week to see how the class had done on
a particular programming task, using coding trails as a springboard to dive into a particular student's
code in front of the class -- always in a positive supportive way, and always with the student's
permission. Students enjoyed this part of the class, and many asked us to bring up their coding trail and
code for discussion. We did not suggest to students that effort, as indicated by coding trails, would be
part of their grade. We then compared the time spent (as measured by the auto-grader system) on four

specific programming assignments from latter weeks in the term, that had also been assigned the
previous term without coding trails enabled. In both terms, students were instructed to do all
development in the auto-grading system, and no other IDE was introduced or mentioned to the students,
who were mostly non-CS majors. The average times (in minutes) are shown in Table 3.

Lab Activity Fall 2019 (no coding trails) Spring 2020 (coding trails
enabled, discussed, utilized)

Week 8: Password modifier
(replace certain characters of
input word by symbols)

9 14

Week 8: Word frequencies
(read text, output number of
times each word appears)

14 33

Week 9: Sort a vector (read a
list of numbers into a vector,
then sort and output)

10 23

Week 9: Contact list (maintain a
list of names and phone
numbers)

9 21

Table 3: Time spent on identical programming assignments, without coding trails (Fall 2019), and
with coding trails discussed with students and utilized during class time (Spring 2020).

One can see that the time spent went up substantially. The data suggests that the presence of coding
trails may have encouraged students to expend more effort, to copy less from classmates or contract
programmers, and/or to not use external environments. Even the latter alone would be a useful impact of
coding trails, so that teachers can see student efforts for the current class or for future research analysis.

7 Conclusions
We described our efforts over the past year to develop a concise textual visual coding trail of a student's
coding efforts. The coding trail can be viewed by teachers to provide quick insights into their class or a
particular student, as a way of navigating to view code for any particular run in a student's effort history,
to detect some forms of cheating (especially relevant since similarity checking doesn't catch today's
increasing use of contract programming), to potentially reduce student temptation to cheat, and to
provide a fun in-class way to view student efforts and dive in deeper with the class.

Most teachers we've shown are strongly enthusiastic. Some had concerns that seeing coding trails would
stress students, but our surveys, and our spring 2020 enabling in 68 classes, showed no such negative
indications. In contrast, students tended to think the coding trails were "cool" or "helpful" and
themselves indicated coding trails may reduce cheating (which is one goal of coding trails, but not the
only one). Thus, it seems coding trails can be safely introduced as a standard feature, that teachers can

begin utilizing them to gain more insight into their classes, and that researchers can experiment with
using coding trails to reduce cheating, detect strugglers, or for other goals. In fact, instructors were so
drawn to the coding trails as a means to quickly see a student's work, that we added a navigation feature
-- instructors can click on any symbol in the coding trail to be taken directly to that run's code. We
enabled coding trails in all classes using our cloud-based system since Fall term 2020, so that coding
trails are present for over 2,000 courses and 150,000 students in 2021. We will continue to experiment
with how to best utilize coding trails in class and to conduct research on its effectiveness in reducing the
temptation to cheat as well.

REFERENCES
[Conner19] Conner, D.C., M. McCarthy, L. Lambert. Integrating Git into CS1/2. Journal of Computing Sciences
in Colleges. October 2019.

[Edwards16] Edwards, Stephen, and Zhiyi Li. "Towards progress indicators for measuring student programming
effort during solution development." Proceedings of the 16th Koli Calling International Conference on Computing
Education Research. 2016.

[Gordon21] Gordon, C., R. Lysecky, and F. Vahid. The rise of the zyLab program auto-grader in introductory CS
courses. Accessed March 2021.
http://zybooks.com/research/whitepaper_the_rise_of_the_zyLab_program_auto-grader_in_introductory_CS_courses.

[Jadud05] Jadud, M.C. A First Look at Novice Compilation Behaviour Using BlueJ. Computer Science
Education, 2005, 15:1, 25-40.

[Jadud06] Jadud, M.C. An Exploration of Novice Compilation Behaviour in BlueJ. Doctor of Philosophy (PhD)
thesis, 2006, University of Kent.

[Kazerouni17] Kazerouni, A.M., S.H. Edwards, T.S. Hall, and C.A. Shaffer. DevEventTracker: Tracking
development events to assess incremental development and procrastination. In ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE), 2017, pp. 104-109.

[Li18] Li, Zhiyi, and Stephen Edwards. "Applying Recent-Performance Factors Analysis to Explore Student
Effort Invested in Programming Assignments." Proceedings of the International Conference on Frontiers in
Education: Computer Science and Computer Engineering (FECS). 2018.

[Malan20] Malan, David J., Brian Yu, and Doug Lloyd. "Teaching academic honesty in CS50." Proceedings of the
51st ACM Technical Symposium on Computer Science Education. 2020.

[Romero20] Romero, Cristobal, and Sebastian Ventura. "Educational data mining and learning analytics: An
updated survey." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 10.3 (2020): e1355.

[Toll16] Toll, Daniel. Measuring Programming Assignment Effort. Diss. Faculty of Technology, Linnaeus
University, 2016.

[Yan18] Yan, Lisa, N. McKeown, M. Sahami, C. Piech. TMOSS: Using intermediate assignment work to
understand excessive collaboration in large classes. ACM technical symposium on computer science education
(SIGCSE), 2018.

[Yeckeh19] YeckehZaare, I. and P. Resnick. Speed and Studying: Gendered Pathways to Success. Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE), February 2019, pp. 693–698.

