
Paper ID #34711

The Rise of Program Auto-grading in Introductory CS Courses: A Case
Study of zyLabs

Chelsea L. Gordon, zyBooks, A Wiley Brand

Chelsea Gordon received her PhD in Cognitive Science at University of California, Merced in 2019.
Chelsea works as a research scientist for zyBooks, a Wiley company that creates and publishes interactive,
web-native textbooks in STEM.

Prof. Roman Lysecky, University of Arizona; zyBooks, A Wiley Brand

Roman Lysecky is VP of Content at zyBooks, A Wiley Brand and a Professor of Electrical and Computer
Engineering at the University of Arizona. He received his Ph.D. in Computer Science from the University
of California, Riverside in 2005. His research focuses on embedded systems, cybersecurity, and STEM
education. He has authored more than 100 research publications, received nine Best Paper Awards, is an
inventor on multiple patents, and received multiple awards for Excellence at the Student Interface.

Prof. Frank Vahid, University of California, Riverside

Frank Vahid is a Professor of Computer Science and Engineering at the Univ. of California, Riverside,
and co-founder and chief learning officer of zyBooks.

c©American Society for Engineering Education, 2021

The rise of the program auto-grading in introductory
CS courses: A case study of zyLabs
Chelsea Gordon*, Roman Lysecky*,†, Frank Vahid*,°

*zyBooks (www.zybooks.com)
†Dept. of Electrical and Computer Engineering, Univ. of Arizona

°Dept. of Computer Science and Engineering, Univ. of California, Riverside

Abstract
In recent years, hundreds of college courses have switched how they grade
programming assignments, from grading manually and/or using batch scripts, to
using commercial cloud-based auto-graders with immediate score feedback to
students and the ability to debug and resubmit for a higher score. This paper
provides data on the rise in usage of one of the most widely-used program auto-
graders, zyLabs, as one indicator of the strong shift in college course grading to the
auto-grading paradigm. The number of courses, instructors, and students using
zyLabs have increased dramatically since it was first introduced, such that from
2016 to 2020, the number of courses per year grew from 284 to 2,175, the number
of students per year from 24,216 to 132,121, and the number of instructors per year
from 364 to 2,866. Most instructors state they previously graded programs by hand
and auto-grading saved an average of 9 hours per week. The result is a substantial
shift in the classroom dynamic that enables instructors and students to spend more
time on quality teaching and learning.

Introduction
Nearly all college-level introductory computer science (CS) courses require
students to write programming assignments, often writing one or more programs
every week.

In the past, most courses graded student programs by hand. A student would
develop the program on their own, and then submit that program on paper or as
online files. A teacher (instructor or teaching assistant) would grade each program's
runtime correctness and often the code quality, providing written feedback. Human
grading's main benefit is high-quality feedback, especially regarding code-quality
(style, problem-solving approach, comments). But drawbacks include extensive
human resource usage, which is expensive and detracts from other high-value
contributions that teachers could make, and a delay of days or weeks before
students get feedback, which can hinder learning.

Today, many courses use a cloud-based auto-grader. Students submit their
programs to a webpage, which in seconds gives feedback on the program's runtime
correctness along with a score. Students can then resubmit to improve their score
[1], [2] aided by automated feedback [3]. The benefits include reduced human
resources, and immediate feedback to aid learning [4]. Drawbacks include little or
no feedback on coding style [5], potential student overreliance on the auto-grader
to test programs [6], and potential cheating of the auto-grader [7]. Some instructors
combine manual and auto-grading, letting the auto-grader provide an initial score
based on runtime correctness, and then later manually adding a score based on code
quality.

To provide instructors visibility into the trend towards auto-grading, this paper
provides data detailing the growth and usage of one particular auto-grader: zyLabs
[8].

zyLabs since 2015
zyBooks was founded in 2012 to improve learning content in introductory CS
courses. Its initial product in 2013 included a web-based textbook replacement
created natively for the web, thus using less text and instead using 100+ animations
and 1000+ interactive learning questions. An integrated homework system was
added in 2014, consisting of short auto-graded coding challenges, where students
complete a program by writing about 3-10 lines of code, or determining the output
of a given program. An example graded zyLab assignment is illustrated in figures
1 and 2 below.

Figure 1: Example graded zyLab assignment. The assignment instructions are

shown on the top left, and submitted code on the top right.

Figure 2: Test results for the example assignment. The submitted code results in a
grade of 9/10, losing one point for not returning “no change” when the input is 0.

In late 2015, zyBooks released zyLabs to auto-grade the main remaining
component of introductory CS courses, namely the weekly programming
assignments. Instructors have the option to enable a develop mode for zyLab
programming assignments. When enabled, develop mode allows students to write
and run their code within the zyBook as often as they choose, before (and after)
submitting the assignment for grading. Instructors who do not enable develop mode
have students use other tools to develop code (IDEs -- integrated development
environments), then submit that code to zyLabs for auto-grading.

Adoptions
Figure 3 shows the number of course offerings that adopted a zyBook with zyLabs
enabled, per year since 2016. A course offering is a delivery of a course in a given
term, such as "CS1 at Univ. of Springfield in Fall 2016". zyLabs adds an extra cost
beyond a base zyBook's cost, and thus courses with zyLabs enabled almost always
make use of the zyLab auto-grader. For all figures in this document, courses are
included if at least 9 students were subscribed to that course.

Figure 3: Course offerings adopting zyLabs per year.

Figure 4 shows the number of students subscribed to those zyBook course offerings
each year, thus representing the number of students to whom the zyLab auto-grader
was available and likely used.

Figure 4: Student zyBook subscriptions with zyLabs enabled per year.

Figure 5 shows the number of instructors teaching classes using a zyBook with
zyLabs enabled, per year. As multiple instructors might teach the same course, this
number is larger than the number of courses shown above.

Figure 5: Instructors teaching courses using a zyBook with zyLabs enabled, per

year.

Figure 6 shows the proportion of zyBooks in C, C++, Java, and Python courses that
have enabled zyLabs, per year. The proportion has been increasing, such that now
substantially more zyBooks have zyLabs enabled.

Figure 6: Instructors teaching C, C++, Java, Python courses using a zyBook with

zyLabs enabled and not enabled, per year.

Usage
Figure 7 below shows the average number of zyLab programming assignments used
in a course offering. We consider a zyLab as being "used" if at least 5 students
submitted programs for grading. We also calculated the average number of zyLabs
programming assignments used per student, and the numbers were the same as
those used in a course offering.

Figure 7: Average number of zyLab programming assignments used in a course
offering. “Used” means that at least 5 students submitted programs for grading.

Figure 8 shows the distribution of the number of zyLab programming assignments
that were used by instructors. Not only is the number of instructors using labs
increasing each year, but the total number of labs that instructors use is also rising
substantially. When zyBooks introduced zyBooks Maintained Labs (ZMLs) in
2019, there was a substantial increase in the number of instructors using 20+ labs,
and even those using 100+ labs in a course.

Figure 8: Distribution of approximate number of zyLabs used by instructors each

year.

Figure 9 shows the number of submissions graded by the auto-grader per year. The
figure shows that not only are the number of zyLab programming assignments per
course increasing, but the usage of those assignments is increasing as well. 2020
saw a dramatic 2.4x increase in usage.

Figure 9: Total number of auto-graded zyLab submissions per year.

Figure 10 shows the distribution of the number of non-comment lines of code in
the instructor solution to auto-graded assignments in one term, Fall 2020. The auto-
grader has been used for assignments that range from 1 line of code to 780 lines of
code in the instructor's solution, with a median of 24 lines of code. (Note: Some
solutions might include template code provided to the student). One can see that
the auto-grader can be used for small to large programs ("large" in the context of
CS classes), with over 1,000 programming assignments being for programs with
100+ line solutions. Figure 11 zooms into the larger programming assignments,
some of which have more than 400 lines of code.

Figure 10: Distribution of instructor solution lengths for auto-graded assignments

in Fall 2020.

Figure 11: Distribution of instructor solution lengths for large auto-graded

assignments in Fall 2020.

Survey data
To understand how the zyLabs auto-grader is changing the classroom, zyBooks
surveyed instructors who used zyLabs during the Fall 2020 semester. A self-
selecting sample of 116 instructors using zyLabs responded.

Figure 12 shows the number of instructors who used various methods of grading
assignments prior to switching to zyLabs auto-grader. The large majority (79%)
report grading assignments by hand, which can be very time-consuming.

Figure 12: Number of instructors using various methods of grading prior to
switching to zyLabs

Figure 13 shows the reported number of grading minutes saved per student each
week after switching to zyLabs. Nearly all instructors reported spending less time
grading; only three instructors (not shown) reported spending more time, ranging
from 1 minute to 6 minutes more per student per week.

Figure 13: Reported number of grading minutes that instructors saved per student

each week after switching to zyLabs.

Figure 14 shows the total number of hours that instructors saved per week on
grading. Nearly half (48.7%) of reporting instructors said that they saved at least 5
hours per week using the zyLabs auto-grader, and over a quarter (26.3%) said that
they saved 9 or more hours per week using zyLabs. The median reported grading
time saved per week was 4.3 hours, and the mean was 9 hours saved per week.

Figure 14: Reported number of grading hours saved each week after switching to

zyLabs.

Figure 15 shows the change in hours per week that students spent on programming
assignments after their course switched to using zyLabs. About half (53%) of
instructors reported that students spend about the same amount of time working on
programming assignments. About a third (35%) of instructors reported that students
have spent more time on programming assignments, with 16% indicating their
students spend 3+ additional hours per week on such assignments.

Figure 15: Reported change in time that students spent on programming

assignments each week after switching to zyLabs

Discussion
Steep rise
The data above shows a steep rise in courses using the zyLabs auto-grader, growing
from zero to over 2,000 course offerings in just a few years, used by over 130,000
students in 2020. In most cases, courses switched to zyLabs not from another auto-
grader but rather from manual grading. The auto-grader is used for small and large

programs. This growth suggests substantial changes in the nature of programming
courses:

● Previously, students would not get feedback for days or even weeks. But
now students get immediate feedback, knowing what score they have earned,
and can correct their code to earn a better score. This tight feedback loop can
yield better learning, and also reduce disappointment due to a lower-than-
expected grade with no opportunity for correction.
● Instructors are saving large amounts of time grading, averaging 9 hours per
week, with some reporting 20+ hours saved. These reductions are quite large,
with the average representing nearly 25% of a 40-hour work week. The large
reduction frees instructors to spend time doing higher value teaching,
including holding help sessions, answering questions, creating new activities,
analyzing student code for common errors for class discussion, detecting and
meeting with struggling / at-risk students, implementing class research
experiments, or doing higher-value grading based on style or problem-solving
approach. An instructor responding in the survey put it this way: "[zyLabs]
has freed up a lot of my time so I can spend more time working with students."
Instructors can also handle more students or teach more classes, and/or
departments can assign fewer teaching assistants for the same number of
students.

We note that part of the extra steep rise in 2020 in particular was due to the COVID-
19 pandemic, where most courses were suddenly being taught online. Many
instructors quickly adopted zyBooks that year, stating the increased need for better
quality learning outside of class.

These changes illustrate a future with a different classroom dynamic. The role of
instructors shifts away from grading and more towards educating. This shift may
also shape the way that students see instructors, seeing them less as their
testers/assessors, and more as their aids/educators.

Potential issues
Immediate feedback focuses on correctness rather than style or approach. As such,
auto-graders might allow poor coding style/approach. This issue can be addressed
by instructors complementing auto-grading with manual grading of at least some
programs, which requires far less time than fully manual grading.

Thinking of how to test one's own code is an important part of creating good
programs. Auto-grading may reduce students' focus on testing their own code, with
some students over-relying on the auto-grader. This issue can be addressed by

future techniques that require students to create their own test cases before
submitting for auto-grading, and even auto-grading the quality of those test cases.
It is partially addressed today by the zyLab instructor-configurable options to meter
submissions by requiring a minimum separation time between submissions (5
minutes is common but as high as 60 minutes has been observed) and/or by limiting
the total number of allowed submissions.

Future directions
Commercial program auto-graders are relatively young. Looking forward, some
improvements may include:

● Providing automated hints, especially for common mistakes. When
surveyed, students’ most common request in programming classes is often for
"more help when stuck". In fact, some "tutorial" labs could be designed in a
tutoring style, allowing students to try to develop alone, but then
incrementally providing parts of a solution upon request.
● Logging a student's develop and submission runs, such that instructors
could give credit not just for the final program but also for the effort along the
way. zyLabs already provides "effort signatures" and lets instructors see the
code for all develop and submission runs of each student. But more logging
and more compact representations may be possible ahead.
● Detecting similar submissions, not only across a class, but across terms, or
with solutions on the internet. zyLabs already provides a built-in similarity
checker across a class.
● Auto-generating problems so that each student gets a unique problem,
and/or so that students can get more practice.
● Using auto-graders not just for weekly programs but also for exams. zyLabs
is already used in hundreds of courses for exams, and in the future may
provide even more support.

Conclusions
Several commercial cloud-based auto-graders have been introduced in recent years.
Our survey showed that auto-graders are saving instructors substantial time,
averaging 9 hours saved per week, while also providing students with immediate
feedback. The data presented in this case study for one of the most popular such
auto-graders, zyLabs, suggests a rapid and somewhat dramatic shift in
programming courses from manual grading to auto-grading. These insights may
help instructors or departments considering whether to switch to using auto-
graders. The prevalence of instructors shifting to auto-grading suggests the need for
extensive new research on how to best use auto-graders in courses, especially to
overcome stated opposition to auto-grading [9]. For example, recent research shows

the benefits of using weekly many-small-programs versus one-large-program in
CS1 courses [10, 11], which is made possible by auto-graders. Other research
directions include best practices for pair-programming with auto-graders, using
auto-graders for different kinds of tasks (weekly programs, quizzes, in-class
activities, etc.), requiring students to create test cases, auto-grading for code style
and comments, techniques to encourage early starts or to decrease cheating, new
experiences using auto-graders' built-in similarity checkers to reduce cheating [12],
and much more.

 References
[1] M. Sherman, S. Bassil, D. Lipman, N. Tuck, and F. Martin, “Impact of auto-

grading on an introductory computing course,” Journal of Computing Sciences
in Colleges, vol. 28, no. 6, pp. 69-75, Jun 2013.

[2] R. Pettit, J. Homer, R. Gee, S. Mengel, and A. Starbuck. “An Empirical Study
of Iterative Improvement in Programming Assignments.” in Proceedings of the
46th ACM Technical Symposium on Computer Science Education, SIGCSE, pp.
410-415, Feb 24 2015.

[3] G. Haldeman, A. Tjang, M. Babeş-Vroman, S. Bartos, J. Shah, D. Yucht, and
T.D. Nguyen, “Providing meaningful feedback for autograding of
programming assignments,” in Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, SIGCSE, pp. 278-283, Feb 21
2018.

[4] H. Keuning, J. Jeuring, and B. Heeren. “Towards a Systematic Review of
Automated Feedback Generation for Programming Exercises,” in Proceedings
of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE '16, pp. 41-46, Jul 2016.

[5] J. Moghadam, R.R. Choudhury, H. Yin, and A. Fox, “AutoStyle: Toward
Coding Style Feedback at Scale,” in Proceedings of the Second (2015) ACM
Conference on Learning @ Scale, pp. 261-266, Mar 14, 2015.

[6] T. Daradoumis, J.M. Puig, M. Arguedas, and L.C. Liñan, “Analyzing students'
perceptions to improve the design of an automated assessment tool in online
distributed programming,” Computers & Education, vol. 128, pp. 159-170, Jan
2019.

[7] I. Albluwi, “Plagiarism in Programming Assessments: A Systematic Review,”
ACM Transactions on Computing Education, TOCE, vol. 20, no. 1, pp. 1-28,
Dec 2019

[8] The zyLabs program auto-grader. https://www.zybooks.com/catalog/zylabs-
programming (accessed March 2021).

[9] T. Beaubouef and J. Mason, “Why the high attrition rate for computer science
students: some thoughts and observations,” ACM SIGCSE Bulletin, vol. 27, no.
2, pp. 103-106, Jun 2005.

[10] J.M. Allen, F. Vahid, A. Edgcomb, K. Downey, and K. Miller, “An Analysis
of Using Many Small Programs in CS1,” in Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, SIGCSE, pp. 585-591,
Feb 22, 2019.

[11] J.M. Allen, F. Vahid, K. Downey, and A. Edgcomb, “Weekly Programs in a
CS1 Class: Experiences with Auto-graded Many-small Programs (MSP),” in
2018 ASEE Annual Conference & Exposition, Jun 23, 2018.

[12] K.W. Bowyer and L.O. Hall, “Experience using MOSS to detect cheating on
programming assignments,” in FIE'99 Frontiers in Education. 29th Annual
Frontiers in Education Conference. Designing the Future of Science and
Engineering Education. Conference Proceedings, vol. 3, pp. 13B3-18, 1999.

