
Python Versus C++: An Analysis of Student Struggle on Small
Coding Exercises in Introductory Programming Courses

Nabeel Alzahrani1, Frank Vahid1,3, Alex Edgcomb1,3, Kevin Nguyen1 and Roman Lysecky2,3
1 Computer Science and Engineering, University of California, Riverside

2 Electrical and Computer Engineering, University of Arizona
3 zyBooks, Los Gatos, California

nalza001@ucr.edu, vahid@cs.ucr.edu, aedgcomb@cs.ucr.edu, knguy092@ucr.edu, rlysecky@ece.arizona.edu

ABSTRACT
Many teachers of CS 1 (introductory programming) have
switched to Python rather than C, C++, or Java. One reason is the
belief that Python’s interpreted nature plus simpler syntax and
semantics ease a student’s learning, but data supporting that belief
is scarce. This paper addresses the question: Do Python learners
struggle less than C++ learners? We analyzed student submissions
on small coding exercises in CS 1 courses at 20 different
universities, 10 courses using Python, and 11 using C++. Each
course used either the Python or C++ version of an online
textbook from one publisher, each book having 100+ small coding
exercises, expected to take 2-5 minutes each. We considered 11
exercises whose Python and C++ versions were nearly identical
and that appeared in various chapters. We defined struggle rate for
exercises, where struggle means a student spent excessive time or
attempts on an exercise. Based on that rate, we found the learning
for Python was not eased; in fact, Python students had
significantly higher struggle rates than C++ students (26% vs.
13%). Higher rates were seen even when considering only classes
with no prerequisites, classes for majors only, or classes for non-
majors only. We encourage the community to do further analyses,
to help guide teachers when choosing a CS 1 language.

ACM Reference format:
Nabeel Alzahrani, Frank Vahid, Alex Edgcomb, Kevin Nguyen
and Roman Lysecky. 2018. Python Versus C++: An Analysis of Student
Struggle on Small Coding Exercises in Introductory Programming
Courses. In SIGCSE ’18: 49th ACM Technical Symposium on Computer
Science Education, Feb. 21–24, 2018, Baltimore, MD, USA. ACM, NY,
NY, USA, 6 pages.DOI: 10.1145/3159450.3160586

1 INTRODUCTION
Python is growing in popularity in introductory programming
classes (CS 1). Various factors are stated for switching from
languages like C, C++, or Java. One is that Python is interpreted
(also known as a scripting language), allowing students to interact
immediately by typing print statements or simple calculations, and

																																																								
	

avoiding some of the complexities of compiling and then running.
Another factor is that Python’s syntax is simpler, thus preventing
students from getting bogged down in syntax errors, and instead
allowing students to focus on higher-level programming concepts.
A third factor is that Python comes with graphics and other
libraries that can make introductory programming courses more
engaging for students, who can analyze real data, create graphics-
based programs like video games, etc. Other reasons include
increasing use of Python in industry, and studies showing fewer
lines of code and/or increased productivity among experienced
programmers. Key hopes by those who switch is to decrease
attrition in CS 1 courses and to attract more people to computing
degrees.

But, many teachers disagree, and continue to teach C, C++, or
Java in CS 1. Reasons include a belief that new learners should
think precisely about details like data types, that learners should
not rely so heavily on library functions, that C/C++/Java (or
variations) are widely used in industry especially in domains like
mobile apps, and that learning Python after C/C++/Java is easier
than the other way (strict to less strict being easier than less strict
to strict). Some teachers indicate frustration that students who
learn Python in CS 1 have trouble in later courses in C/C++/Java,
not wanting to be bothered by details. Some engineers state new
hires don’t understand or respect underlying resources, which can
lead to problems on commonly-constrained platforms.
Furthermore, cloud-based coding systems for C/C++/Java, where
students code in a web window and press “Run”, reduce the
interpreted/scripting benefit of Python for beginning students.

In previous work, Enbody [1, 2] used Python and C++ for groups
in CS 1. They compared the Python-group and C++-group on
three outcomes: final exam grade, programming projects scores,
and course final grade, and found no significant differences.
Using progression analysis, they also found that programming
language features had no effect on students’ performance in CS 2.
For object-oriented programming (OOP), Goldwasser [3] reported
that students in CS 1 were overwhelmed by the syntax and
semantics of C++ and Java, and found Python provided a simple
and consistent model to teach OOP. Prechelt [4] found
programmers using a scripting language like Python can solve the
same problem with less code and higher productivity vs. a system
language such as C++. Zelle [5] found that scripting languages are
simpler, safer, and more flexible vs. system languages like C and
C++. Guo [6] stated that Python is the most used CS 1 language in
top-ranked U.S. research universities. Such related research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE '18, February 21–24, 2018, Baltimore, MD, USA.
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02…$15.00
https://doi.org/10.1145/3159450.3160586

suggests how Python can be helpful to teach programming skills.
We sought however to determine from the students’ experiences
whether Python led to less student struggle.

This paper describes our analysis of student struggle rates on
identical small coding exercises used in Python and C++ classes
across 20 universities. Struggle means spending excessive time or
making excessive attempts on such exercises. Some teachers (like
ourselves) believe struggle is an important metric because struggle
can lead to frustration, and excessive/repeated frustration can lead
to students giving up. Struggle is one way (but not the only way)
of estimating the learning curve of a language. This paper
introduces the small coding exercises, defines a struggle metric,
provides data comparing struggle rates for Python and C++ in CS
1 courses showing that struggle rates for Python are not lower
(and are actually higher), summarizes a manual investigation into
the student submissions to better understand those rates, discusses
possible reasons that Python’s struggle rates are not lower and are
actually higher, and provides conclusions.

2 SMALL CODING EXERCISES
zyBooks [8] is a publisher that creates online textbooks for
introductory C, C++, Java, and Python, with those textbooks
being very similar but adapted to each language. Over 100 small
coding exercises are embedded at the end of sections throughout
those books. The exercises are cloud-based, meaning students
code directly in a web window and press “Run” to execute their
code, so no substantial difference exists between C++’s
compile/execute approach and Python’s interpreted approach. We
abbreviate those exercises in this paper as CA (coding activity).
Figure 1 provides some examples.

Each exercise has a coding window with a partial program, and
the student is instructed to complete the program to carry out a
particular task, like printing numbers by dividing a variable of
value 40 until reaching 1 as shown in Figure 1. The instructions
usually include a first test case (sample input and output). The
student can only edit the relevant portion of the existing program.
When the student presses “Run”, the program is executed with
various test cases that test for proper program output, and the
student is shown which test cases passed and which failed
(showing the difference in output for failed cases) as shown in
Figure 2. Each exercise is worth 2 points: 1 point for passing any
test case, and 1 point for passing all test cases. Students can
attempt such exercises as many times as desired. Most universities
give students some homework points for completing those coding
exercises.

The CA in Figure 1, titled “Basic while loop expression”, asks the
students to print userNum divided by 2 until reaching 1 (given
userNum = 40). The shown code is the template. Students change
the comment “/* Your solution goes here */” with their code.

Our institution has taught both Python and C++ in our CS 1, so
we wished to compare those languages. We noticed 11 of the
CA’s were nearly identical in the Python and C++ versions. Those

CA’s are summarized in Table 1, numbered as CA 1, 2, …, 11
(which differs from the numbering in the textbooks).

3 STRUGGLE RATE AS A METRIC
To calculate the struggle rate, we first needed to find the number
of struggling students for a particular CA. We define struggling
students using two parameters: number of attempts (number of
submissions), and time spent trying to solve the CA. Students may
submit multiple submissions before achieving the correct solution
to a CA. We define a struggling student for a particular CA as a
student who has spent more than 5 minutes and spent more than
double the Baseline time and attempted more than 3 times and
attempted more than double the Baseline attempts, or spent more
than 15 minutes. The Baseline time is the time spent by the top
20% students in that class for that CA and the Baseline attempts is
the number of attempts by the top 20% students in that class for

Figure 2: A wrong student solution to the Figure 1 CA.
Differences between student and expected output are
highlighted.

Figure 1: Each coding activity (CA) includes instructions, an
example, a coding area, and a Run button. For this activity, only
lines 8 - 10 are editable.

.

that CA. We defined a dynamic struggle rate (by referring to top
20% students) rather than a static struggle rate to account for the
class (students) background level in programming. A CA’s
struggle rate is defined as the # of struggling students divided by
the # of students in that class. The following formulas summarize
a struggling student and the struggle rate.

Struggling student = ((time > 5 min.) AND (time
> 2 * Baseline time) AND (# attempts > 3) AND
(# attempts > 2 * Baseline attempts)) OR (time >
15 min.)
Struggle rate = # struggling students / # students
Changing the parameters increases or decreases the struggle rate;
we based these numbers on teaching experiences. Other struggle
rate metrics are possible. For our purposes, the raw % is less
important than is the comparison of rates for different languages.
As shown in Table 2, students can make multiple submissions for
each CA. Each submission consists of a timestamp, user id #,
correctness, and the submitted code. To identify a struggling
student for a CA, we do the following: (1) get the student total
time spent and the student total number of attempts to solve that
CA; (2) calculate the top 20% student average time to solve that
CA, called “Baseline time”, and the top 20% student average

number of attempts to solve that CA, called “Baseline attempts”;
(3) if the student total time spent is greater than 15 minutes, then
the student is a struggling student; or if the student total time spent
is greater than 5 minutes and the student total time spent is greater
than double the Baseline time and the student total number of
attempts is greater than 3 and the student total number of attempts
is greater than double the Baseline attempts, then the student is a
struggling student. To calculate the struggle rate for a CA, we
divide the total number of struggling students for a CA by the
total number of students for that CA.

4 RESULTS
We obtained anonymized student submission data for the 11
above-mentioned nearly-identical CAs, for C++ and Python
courses at dozens of universities. We chose 11 C++ courses and
10 Python courses at 20 universities to represent a variety of
institutions, including 4-year research institutions (none were
schools typically ranked in the top 20), non-research 4-year
institutions, and 2-year institutions (community colleges). To
obtain roughly equal samples from both languages, we generally
sought to match each C++ course with a Python course from an
institution of the same type and roughly the same numbers of
students. Table 3 shows the number of students in the 20 courses
per language (C++ and Python). Obviously such matching can’t
be perfect, but by attempting such matching, coupled with the
large numbers of students, we can have more confidence that the
two sample populations’ statistics can be meaningfully compared.

Table 4 shows the struggle rates for the 11 coding exercises,
summarized for all 11 C++ courses and all 10 Python courses. For
example, the first data row is for CA 1 (Coding Activity 1). 787

Table 2: A snapshot of the student 0xxx submissions for CA2:
Basic while loop expression.
Time of
submission

User

Answer
correct

Submitted solution

3/10/2017
1:20:44 PM

0xxx No while (userNum != 1){
 cout << userNum << " ";
 userNum = userNum / 2;
 }

... 0xxx No ...

3/10/2017
1:24:51 PM

0xxx No while (userNum !=0){
 while (userNum != 1){
 cout << userNum << " ";
 userNum = userNum / 2;
 }
 }
 cout << userNum << " ";

... 0xxx No ...

3/10/2017
1:30:18 PM

0xxx Yes while (userNum >= 1){
 cout << userNum << " ";
 userNum = userNum / 2;
 }

Table 1: List of the 11 CA’s with their titles and chapters.

CA

CA title Ch # Chapter Title

1 Tree Height 2 Vars / Assgnmt

2 Basic while loop expression 4 Loops

3 Simon says 4 Loops

4 Vector iteration: Sum excess 5 Arrays / Vectors

5 Function call in expression 6 User-Def Fcts

6 Function errors: Copying one
function to create another

6 User-Def Fcts

7 Function with loop: Shampoo. 6 User-Def Fcts

8 Constructor overloading 7 Objs & Classes

9 Basic inheritance 10 Inheritance

10 Derived class membr override 10 Inheritance

11 Recursive function: Writing
the base case

12 Recursion

C++ students across the 11 C++ courses attempted that CA, while
434 Python students did. Among those students, 5% of the C++
students struggled (39 out of 787), while 9% of the Python
students struggled (41 out of 434). Such data is shown for each of
the 11 CA’s. On average, the C++ struggle rate was 13%, while
the Python struggle rate 26%. The average was computed by
dividing the total number of students for all the 11 CA’s by the
total number of struggling students for all the 11 CA’s. We did the
struggle rate analysis for one community college with similar
numbers of students in both C++ (21) and Python (29), and we
found nearly identical results with Python students struggling
more than C++ students.

The data surprised us, so we further sought to see if perhaps the
effect was due to differences in the student populations. We did

not have access to information about individual students, so we
examined the course descriptions. We considered that perhaps the
C++ courses were a second course, following a simpler
programming course or some other computing-related course.
Thus, we excluded any courses that had a computing-related
prerequisite, reducing the set to 4 C++ courses and 7 Python
courses. Table 5 shows results. The difference in struggle rates
continued: 14% for C++, 28% for Python.

We considered that perhaps the C++ courses were taken by
majors and Python by non-majors. We thus divided the courses
into those intended for majors (per their course descriptions), and
those for non-majors. The effect was still seen: 10% vs. 26%
struggle for majors (2242 C++ and 383 Python students), and 18%
vs. 26% for non-majors (1783 C++ and 1834 Python students).

Because students are anonymized and we have no data on the
students themselves, the above analyses should not be considered
as perfectly representative of the student populations. For
example, the courses intended for non-majors may very well have
had some majors. However, the analysis was intended merely to
determine if the hypothesis is correct that Python students have a
substantially easier learning curve than C++ students. For that
purpose, the data seems to suggest that belief is false (and in fact
the opposite may be true)

5 ANALYSIS

Table 3: Each row is two similar schools using different
languages. A Python-match for row 11 does not exist, but
we kept the C++ offering to have data for no-prerequisite
and non-majors for C++ CA’s.

School Total #
students
in C++

Total # students in
Python

1 (Research universities) 153 105

2 (Community colleges) 13 33

3 (Teaching universities) 34 23

4 (Research universities) 277 176

5 (Same community college) 21 29

6 (Teaching universities) 48 35

7 (Research universities) 121 92

8 (Community colleges) 14 165

9 (Community colleges) 15 17

10 (Research universities) 167 195

11 (Teaching university) 194 N/A

Total number of students 1057 870

Table 4: A comparison of struggle rates on 11 nearly-
identical coding exercises for 11 C++ and 10 Python courses.

Table 5: Struggle rates considering only courses having no
computing-related prerequisites, meaning 4 C++ courses and
7 Python courses.

Tables 4 and 5 show Python students struggle more than C++
students. We want to account for the relative number of students
per CA because the struggle % is not consistent per CA. For
example, in Table 5, CA 8 had 247 C++ students but only 32
Python students. We thus converted the difference of the average
C++ and Python Z-scores to a % as follows. For each table, we:

1. Calculated the Z-score per CA: We used the mean and
standard deviation of C++ and Python struggle combined per
CA.

2. Calculated the p-value for the whole table: We used a
Student's t-test to compare the C++ Z-scored struggle to
Python Z-scored struggle

3. Calculated the percentage of the average difference: We
averaged the C++ Z-scores, and separately averaged the
Python Z-scores, then used a Z-score to percentile calculator
[7] to convert the difference in average to a percentile.

The final step gives the % likelihood that a given student would
struggle more with Python than C++. Table 6 shows that a student
is 12% more likely to struggle with Python than C++.

6 MANUAL INVESTIGATION
The analysis above suggests that the Python learning curve, based
on the metric of struggle rate on small coding exercises, is not
easier than the C++ learning curve. In fact, the analysis suggests
(perhaps surprisingly) that the learning curve is actually harder.
To better understand, we manually examined student submissions
to many of the CA’s. Because manual examination is very time

consuming, we examined CA’s 1, 2, 7, and 10, seeking to spread
out the CA’s examined.

Table 7 illustrates our findings. For example, for CA 1, which
involved converting a math equation into an assignment
statement, Python students struggled more with basic assignment
concepts, such as missing an = operator, confusing left and right
sides, or assigning to an expression rather than a variable. For CA
2, which involved writing a while loop to output a number halved
until reaching 0, Python students struggled more on all aspects of
the problem, including writing the loop condition, updating the
loop counter variable, or placing the output in the correct location.

7 DISCUSSION
Limitations: Other struggle metrics exist, such as measuring
struggle on weekly programming assignments, surveying students,
measuring performance on exams, etc.

Our analysis involved 1,927 students at courses across 20
universities. While those large numbers and the diversity of
populations are strengths of the data and likely minimizes the
impact of one particular course’s policies or instructor’s teaching
style, also useful would be a controlled study at one university
(which is hard to carry out, since such random assignment is
rarely acceptable), or where the university switched from one
language to another across semesters (but other factors like
teacher and student population may confound results).

The Python/C++ textbooks use a standard approach. Other
approaches, such as a media-based approach or objects-first
ordering, may yield different results.

The perceived easier learning curve is just one reason some
teachers have switched to Python. Other reasons exist, such as
built-in libraries. Thus, the above data relates to just one factor
among many that influence a CS 1 language decision.

Possible reasons: This study analyzed struggle rate, not the
reasons. One possible reason for Python’s struggle rate not being
lower than for C++ is that learning core programming concepts
may overshadow syntax issues. The manual investigation of
student submissions seemed to support this reason; few students
struggled with syntax in either language. Instead, struggle was due
to programming concepts like creating a proper loop to solve a
task. The case may be that college students can master the basic
syntax of C++ nearly as quickly as they master the slightly-easier
syntax of Python. Also, C++ teachers can choose whether or not
to dwell on C++ syntax. The textbook in this study avoids
potentially-problematic aspects of C++, such as branches/loops
without braces (the book always uses braces), assignments in
branch/loop expressions (the book avoids those), use of
prefix/postfix increment operators (the book avoids except in a
for-loop header), etc., instead teaching a common and safer subset
of C++.

Table Students population p-value Struggle
%

Table 4 All students. 11 C++ and 10
Python courses and each
course's submissions has 11
CA's.

< 0.0001 12%

Table 5 No prerequisite. with 4 C++
and 7 Python courses.

< 0.0001 12%

Not
shown

No prerequisite and CS
majors. 2 C++ and 4 Python
courses.

< 0.0001 18%

Not
shown

No prerequisite and non CS
majors. 2 C++ and 3 Python
courses.

< 0.0001 6%

Table 6: % likelihood that any given student would
struggle more with Python than with C++
	

Python’s struggle rate was surprisingly higher. One possible
reason relates to programming requiring precision. From the
beginning, C++ requires precise thought about variable
declarations, variable types, data types resulting from expressions,
use of braces, use of = vs. ==, etc. This precision may prime

students to think more precisely about language-independent
problem-solving as well, like writing loop expressions that iterate
exactly as desired. Python’s forgivingness might breed a more
cavalier attitude that extends beyond syntax/semantics into
problem solving as well. This of course is just conjecture; future
work may seek to test the idea.

We note that cloud-based programming is reducing the difference
between languages, eliminating (or postponing) the need to install
or even use an IDE.

8 CONCLUSIONS
One factor leading teachers to use Python in CS 1 courses is the
belief that Python has an easier learning curve. We analyzed
struggle rates for 11 nearly-identical short coding exercises in 11
C++ and 10 Python courses, involving about 1,000 students in
each language at 20 universities. We found the Python struggle
rate was not lower than C++. One possible reason is that the
languages’ syntax differences are eclipsed by the difficulty of
learning language-independent programming concepts, especially
if C++ teachers don’t dwell on C++’s complex syntax options.

In fact, our analysis showed Python’s struggle rate to be
significantly higher than C++. One possible reason is that C++’s
focus on precision translates to a more precise approach to
programming. As for attrition, at our institution, we have found
that a caring talented instructor with good class design, policies,
and assignments -- appropriate homework/assignment points ratio,
various help resources, encouragement of collaboration, flipped
lectures, interesting/relevant assignments -- seem far more
important than the language choice. In fact, in our most recent
offering of CS 1 in C++, students provided evaluations in the
95’th percentile for all courses in the university of 30,000
students, while performing strongly on programming assignments
and exams.

In any case, the analysis might help CS 1 teachers predict whether
switching from C++ (or C or Java) to Python might yield the
desired benefit of an easier learning curve. We encourage the
community to perform more such analyses, so that teachers can be
guided by data in making language decisions for CS 1 courses.

REFERENCES
[1] Richard J. Enbody, William F. Punch, and Mark McCullen. 2009. Python CS1 as

preparation for C++ CS2. ACM SIGCSE Bulletin 41, no. 1 (2009): 116-120.
[2] Richard J. Enbody, and William F. Punch. 2010. Performance of python CS1

students in mid-level non-python CS courses. In Proceedings of the 41st ACM
technical symposium on Computer science education, pp. 520-523. ACM, 2010.

[3] Michael H. Goldwasser, and David Letscher. 2008. Teaching an object-oriented
CS1-: with Python. ACM SIGCSE bulletin, vol. 40, no. 3, pp. 42-46. ACM,
2008.

[4] Lutz Prechelt. 2003. Are scripting languages any good? A validation of Perl,
Python, Rexx, and Tcl against C, C++, and Java. Advances in Computers 57
(2003): 205-270.

[5] John M. Zelle. 1999. Python as a first language. In Proceedings of 13th Annual
Midwest Computer Conference, vol. 2, p. 145. 1999.

[6] Philip Guo. 2014. Python is now the most popular introductory teaching
language at top us universities. BLOG@ CACM, July (2014): 47.

[7] Measuring U. Z-Score to Percentile Calculator. https://measuringu.com/pcalcz/,
accessed Aug, 2017.

[8] zyBooks. https://www.zybooks.com/, accessed Aug, 2017.

 Table 7: CA1, 2, 7, and 10 for all data and the reasons why
 students struggled, as determined by manual
 investigation.

CA C++ Python

 Reasons Reasons

1 1-Using / instead of *
2-Missing tan() for the
angleElevation
variable
3-Mistyping variable
names

1-Using tan() instead of
math.tan()
2-Using / instead of *
3-Missing tan() for the
angleElevation variable
3-Mistyping variable names
4-Wrong assignment (using two
= symbols, assign to the wrong
variable, reverse assignment,
etc.)

2 1-Wrong loop
condition
2-Wrong/missing loop
counter update
3-Missing/wrong
location output stmt

1-Wrong loop condition
2-Wrong/missing loop counter
update
3-Missing/wrong location
output statement
4-Indentation (few: just 5
students)

7 1-Missing for-loop
2-Missing counter
inside the for-loop
3-Wrong for-loop
counter initial value
4-Wrong for-loop
condition
5-Wrong for-loop
location
6-Wrong cout() arg
inside for-loop

1-Missing for-loop
2-Wrong while-loop update
(when using while-loop)
3-Wrong for-loop condition
4-Wrong print() argument
inside the for-loop
5-Missing for-loop condition
variable inside the for-loop
6-Wrong for-loop location

10 1-Missing ;
2-Wrong cout()
argument
3-Not complete cout()
arguments
4-Wrong location to
call a member function
5-Missing to call a
member function
6-Wrong format to call
a member function
7-Missing function def

1-Missing function definition
2-Missing call to member
function
3-Missing argument to call a
member function
4-Extra space when calling
print()
5-Wrong call to a member
function
6-Wrong print() statement
7-Wrong function argument

